Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Front Cell Neurosci ; 18: 1360870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572073

RESUMEN

Degeneration of photoreceptors in the retina is a leading cause of blindness, but commonly leaves the retinal ganglion cells (RGCs) and/or bipolar cells extant. Consequently, these cells are an attractive target for the invasive electrical implants colloquially known as "bionic eyes." However, after more than two decades of concerted effort, interfaces based on conventional electrical stimulation approaches have delivered limited efficacy, primarily due to the current spread in retinal tissue, which precludes high-acuity vision. The ideal prosthetic solution would be less invasive, provide single-cell resolution and an ability to differentiate between different cell types. Nanoparticle-mediated approaches can address some of these requirements, with particular attention being directed at light-sensitive nanoparticles that can be accessed via the intrinsic optics of the eye. Here we survey the available known nanoparticle-based optical transduction mechanisms that can be exploited for neuromodulation. We review the rapid progress in the field, together with outstanding challenges that must be addressed to translate these techniques to clinical practice. In particular, successful translation will likely require efficient delivery of nanoparticles to stable and precisely defined locations in the retinal tissues. Therefore, we also emphasize the current literature relating to the pharmacokinetics of nanoparticles in the eye. While considerable challenges remain to be overcome, progress to date shows great potential for nanoparticle-based interfaces to revolutionize the field of visual prostheses.

3.
J Neural Eng ; 21(2)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457841

RESUMEN

Objective.Retinal implants use electrical stimulation to elicit perceived flashes of light ('phosphenes'). Single-electrode phosphene shape has been shown to vary systematically with stimulus parameters and the retinal location of the stimulating electrode, due to incidental activation of passing nerve fiber bundles. However, this knowledge has yet to be extended to paired-electrode stimulation.Approach.We retrospectively analyzed 3548 phosphene drawings made by three blind participants implanted with an Argus II Retinal Prosthesis. Phosphene shape (characterized by area, perimeter, major and minor axis length) and number of perceived phosphenes were averaged across trials and correlated with the corresponding single-electrode parameters. In addition, the number of phosphenes was correlated with stimulus amplitude and neuroanatomical parameters: electrode-retina and electrode-fovea distance as well as the electrode-electrode distance to ('between-axon') and along axon bundles ('along-axon'). Statistical analyses were conducted using linear regression and partial correlation analysis.Main results.Simple regression revealed that each paired-electrode shape descriptor could be predicted by the sum of the two corresponding single-electrode shape descriptors (p < .001). Multiple regression revealed that paired-electrode phosphene shape was primarily predicted by stimulus amplitude and electrode-fovea distance (p < .05). Interestingly, the number of elicited phosphenes tended to increase with between-axon distance (p < .05), but not with along-axon distance, in two out of three participants.Significance.The shape of phosphenes elicited by paired-electrode stimulation was well predicted by the shape of their corresponding single-electrode phosphenes, suggesting that two-point perception can be expressed as the linear summation of single-point perception. The impact of the between-axon distance on the perceived number of phosphenes provides further evidence in support of the axon map model for epiretinal stimulation. These findings contribute to the growing literature on phosphene perception and have important implications for the design of future retinal prostheses.


Asunto(s)
Retina , Prótesis Visuales , Humanos , Estudios Retrospectivos , Retina/fisiología , Fosfenos , Axones , Estimulación Eléctrica , Percepción
4.
J Neural Eng ; 21(1)2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38364290

RESUMEN

Objective.Retinal prosthetics offer partial restoration of sight to patients blinded by retinal degenerative diseases through electrical stimulation of the remaining neurons. Decreasing the pixel size enables increasing prosthetic visual acuity, as demonstrated in animal models of retinal degeneration. However, scaling down the size of planar pixels is limited by the reduced penetration depth of the electric field in tissue. We investigated 3-dimensional (3d) structures on top of photovoltaic arrays for enhanced penetration of the electric field, permitting higher resolution implants.Approach.3D COMSOL models of subretinal photovoltaic arrays were developed to accurately quantify the electrodynamics during stimulation and verified through comparison to flat photovoltaic arrays. Models were applied to optimize the design of 3D electrode structures (pillars and honeycombs). Return electrodes on honeycomb walls vertically align the electric field with bipolar cells for optimal stimulation. Pillars elevate the active electrode, thus improving proximity to target neurons. The optimized 3D structures were electroplated onto existing flat subretinal prostheses.Main results.Simulations demonstrate that despite exposed conductive sidewalls, charge mostly flows via high-capacitance sputtered iridium oxide films topping the 3D structures. The 24µm height of honeycomb structures was optimized for integration with the inner nuclear layer cells in the rat retina, whilst 35µm tall pillars were optimized for penetrating the debris layer in human patients. Implantation of released 3D arrays demonstrates mechanical robustness, with histology demonstrating successful integration of 3D structures with the rat retinain-vivo.Significance. Electroplated 3D honeycomb structures produce vertically oriented electric fields, providing low stimulation thresholds, high spatial resolution, and high contrast for pixel sizes down to 20µm. Pillar electrodes offer an alternative for extending past the debris layer. Electroplating of 3D structures is compatible with the fabrication process of flat photovoltaic arrays, enabling much more efficient retinal stimulation.


Asunto(s)
Miembros Artificiales , Degeneración Retiniana , Prótesis Visuales , Humanos , Ratas , Animales , Prótesis e Implantes , Retina/fisiología , Neuronas/fisiología , Estimulación Eléctrica , Electrodos Implantados
5.
Biomed Eng Lett ; 14(2): 355-365, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38374901

RESUMEN

Subretinal prostheses have been developed to stimulate survived retinal ganglion cells (RGCs), indirectly following the physiological visual pathways. However, current spreading from the prosthesis electrode causes the activation of unintended RGCs, thereby limiting the spatial resolution of artificial vision. This study proposes a strategy for focal stimulation of RGCs using a subretinal electrode array, in which six hexagonally arranged peripheral electrodes surround a stimulating electrode. RGCs in an in-vitro condition were subretinally stimulated using a fabricated electrode array coated with iridium oxide, following the three different stimulation configurations (with no peripheral, six electrodes of opposite current, and six ground). In-vitro experiments showed that the stimulation with six electrodes of opposite current was most effective in controlling RGC responses with a high spatial resolution. The results suggest that the effective utilization of return electrodes, such as by applying an opposite current to them, could help reduce current spreading beyond the local area targeted for stimulation and elicit RGC responses only in the vicinity of the stimulating electrode. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-023-00342-3.

6.
Bioengineering (Basel) ; 11(2)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38391665

RESUMEN

Ocular diseases present a unique challenge and opportunity for therapeutic development. The eye has distinct advantages as a therapy target given its accessibility, compartmentalization, immune privilege, and size. Various methodologies for therapeutic delivery in ocular diseases are under investigation that impact long-term efficacy, toxicity, invasiveness, and delivery range. While gene, cell, and antibody therapy and nanoparticle delivery directly treat regions that have been damaged by disease, they can be limited in the duration of the therapeutic delivery and have a focal effect. In contrast, contact lenses and ocular implants can more effectively achieve sustained and widespread delivery of therapies; however, they can increase dilution of therapeutics, which may result in reduced effectiveness. Current therapies either offer a sustained release or a broad therapeutic effect, and future directions should aim toward achieving both. This review discusses current ocular therapy delivery systems and their applications, mechanisms for delivering therapeutic products to ocular tissues, advantages and challenges associated with each delivery system, current approved therapies, and clinical trials. Future directions for the improvement in existing ocular therapies include combination therapies, such as combined cell and gene therapies, as well as AI-driven devices, such as cortical implants that directly transmit visual information to the cortex.

8.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014082

RESUMEN

Objective: High-resolution retinal prosthetics offer partial restoration of sight to patients blinded by retinal degenerative diseases through electrical stimulation of the remaining neurons. Decreasing the pixel size enables an increase in prosthetic visual acuity, as demonstrated in animal models of retinal degeneration. However, scaling down the size of planar pixels is limited by the reduced penetration depth of the electric field in tissue. We investigate 3-dimensional structures on top of the photovoltaic arrays for enhanced penetration of electric field to permit higher-resolution implants. Approach: We developed 3D COMSOL models of subretinal photovoltaic arrays that accurately quantify the device electrodynamics during stimulation and verified it experimentally through comparison with the standard (flat) photovoltaic arrays. The models were then applied to optimise the design of 3D electrode structures (pillars and honeycombs) to efficiently stimulate the inner retinal neurons. The return electrodes elevated on top of the honeycomb walls surrounding each pixel orient the electric field inside the cavities vertically, aligning it with bipolar cells for optimal stimulation. Alternatively, pillars elevate the active electrode into the inner nuclear layer, improving proximity to the target neurons. Modelling results informed a microfabrication process of electroplating the 3D electrode structures on top of the existing flat subretinal prosthesis. Main results: Simulations demonstrate that despite the conductive sidewalls of the 3D electrodes being exposed to electrolyte, most of the charge flows via the high-capacitance sputtered Iridium Oxide film that caps the top of the 3D structures. The 24 µm height of the electroplated honeycomb structures was optimised for integration with the inner nuclear layer cells in rat retina, while 35 µm height of the pillars was optimized for penetrating the debris layer in human patients. Release from the wafer and implantation of the 3D arrays demonstrated that they are mechanically robust to withstand the associated forces. Histology demonstrated successful integration of the 3D structures with the rat retina in-vivo. Significance: Electroplated 3D honeycomb structures produce a vertically oriented electric field that offers low stimulation threshold, high spatial resolution and high contrast for the retinal implants with pixel sizes down to 20µm in width. Pillar electrodes offer an alternative configuration for extending the stimulation past the debris layers. Electroplating of the 3D structures is compatible with the fabrication process of the flat photovoltaic arrays, thereby enabling much more efficient stimulation than in their original flat configuration.

9.
medRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014146

RESUMEN

Objective: To assess the efficacy and safety of the PRIMA subretinal neurostimulation system 48-months post-implantation for improving visual acuity (VA) in patients with geographic atrophy (GA) due to age-related macular degeneration (AMD) at 48-months post-implantation. Design: First-in-human clinical trial of the PRIMA subretinal prosthesis in patients with atrophic AMD, measuring best-corrected ETDRS VA (Clinicaltrials.gov NCT03333954). Subjects: Five patients with GA, no foveal light perception and VA of logMAR 1.3 to 1.7 in their worse-seeing "study" eye. Methods: In patients implanted with a subretinal photovoltaic neurostimulation array containing 378 pixels of 100 µm in size, the VA was measured with and without the PRIMA system using ETDRS charts at 1 meter. The system's external components: augmented reality glasses and pocket computer, provide image processing capabilities, including zoom. Main Outcome Measures: VA using ETDRS charts with and without the system. Light sensitivity in the central visual field, as measured by Octopus perimetry. Anatomical outcomes demonstrated by fundus photography and optical coherence tomography up to 48-months post-implantation. Results: All five subjects met the primary endpoint of light perception elicited by the implant in the scotoma area. In one patient the implant was incorrectly inserted into the choroid. One subject died 18-months post-implantation due to study-unrelated reason. ETDRS VA results for the remaining three subjects are reported herein. Without zoom, VA closely matched the pixel size of the implant: 1.17 ± 0.13 pixels, corresponding to mean logMAR 1.39, or Snellen 20/500, ranging from 20/438 to 20/565. Using zoom at 48 months, subjects improved their VA by 32 ETDRS letters versus baseline (SE 5.1) 95% CI[13.4,49.9], p<0.0001. Natural peripheral visual function in the treated eye did not decline after surgery compared to the fellow eye (p=0.08) during the 48 months follow-up period. Conclusions: Subretinal implantation of PRIMA in subjects with GA suffering from profound vision loss due to AMD is feasible and well tolerated, with no reduction of natural peripheral vision up to 48-months. Using prosthetic central vision through photovoltaic neurostimulation, patients reliably recognized letters and sequences of letters,and with zoom it provided a clinically meaningful improvement in VA of up to eight ETDRS lines.

10.
Proc Natl Acad Sci U S A ; 120(42): e2307380120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37831740

RESUMEN

In patients blinded by geographic atrophy, a subretinal photovoltaic implant with 100 µm pixels provided visual acuity closely matching the pixel pitch. However, such flat bipolar pixels cannot be scaled below 75 µm, limiting the attainable visual acuity. This limitation can be overcome by shaping the electric field with 3-dimensional (3-D) electrodes. In particular, elevating the return electrode on top of the honeycomb-shaped vertical walls surrounding each pixel extends the electric field vertically and decouples its penetration into tissue from the pixel width. This approach relies on migration of the retinal cells into the honeycomb wells. Here, we demonstrate that majority of the inner retinal neurons migrate into the 25 µm deep wells, leaving the third-order neurons, such as amacrine and ganglion cells, outside. This enables selective stimulation of the second-order neurons inside the wells, thus preserving the intraretinal signal processing in prosthetic vision. Comparable glial response to that with flat implants suggests that migration and separation of the retinal cells by the walls does not cause additional stress. Furthermore, retinal migration into the honeycombs does not negatively affect its electrical excitability, while grating acuity matches the pixel pitch down to 40 µm and reaches the 27 µm limit of natural resolution in rats with 20 µm pixels. These findings pave the way for 3-D subretinal prostheses with pixel sizes of cellular dimensions.


Asunto(s)
Poríferos , Neuronas Retinianas , Prótesis Visuales , Humanos , Ratas , Animales , Implantación de Prótesis , Retina/fisiología , Visión Ocular , Estimulación Eléctrica
11.
Bioengineering (Basel) ; 10(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37892865

RESUMEN

This study aims to investigate the efficacy of electrical stimulation by comparing network-mediated RGC responses in normal and degenerate retinas using a N-methyl-N-nitrosourea (MNU)-induced non-human primate (NHPs) retinitis pigmentosa (RP) model. Adult cynomolgus monkeys were used for normal and outer retinal degeneration (RD) induced by MNU. The network-mediated RGC responses were recorded from the peripheral retina mounted on an 8 × 8 multielectrode array (MEA). The amplitude and duration of biphasic current pulses were modulated from 1 to 50 µA and 500 to 4000 µs, respectively. The threshold charge density for eliciting a network-mediated RGC response was higher in the RD monkeys than in the normal monkeys (1.47 ± 0.13 mC/cm2 vs. 1.06 ± 0.09 mC/cm2, p < 0.05) at a 500 µs pulse duration. The monkeys required a higher charge density than rodents among the RD models (monkeys; 1.47 ± 0.13 mC/cm2, mouse; 1.04 ± 0.09 mC/cm2, and rat; 1.16 ± 0.16 mC/cm2, p < 0.01). Increasing the pulse amplitude and pulse duration elicited more RGC spikes in the normal primate retinas. However, only pulse amplitude variation elicited more RGC spikes in degenerate primate retinas. Therefore, the pulse strategy for primate RD retinas should be optimized, eventually contributing to retinal prosthetics. Given that RD NHP RGCs are not sensitive to pulse duration, using shorter pulses may potentially be a more charge-effective approach for retinal prosthetics.

12.
Korean J Physiol Pharmacol ; 27(6): 541-553, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37884286

RESUMEN

Retinal prostheses have shown some clinical success in restoring vision in patients with retinitis pigmentosa. However, the post-implantation visual acuity does not exceed that of legal blindness. The reason for the poor visual acuity might be that (1) degenerate retinal ganglion cells (RGCs) are less responsive to electrical stimulation than normal RGCs, and (2) electrically-evoked RGC spikes show a more widespread not focal response. The single-biphasic pulse electrical stimulation, commonly used in artificial vision, has limitations in addressing these issues. In this study, we propose the benefit of multiple consecutive-biphasic pulse stimulation. We used C57BL/6J mice and C3H/HeJ (rd1) mice for the normal retina and retinal degeneration model. An 8 × 8 multi-electrode array was used to record electrically-evoked RGC spikes. We compared RGC responses when increasing the amplitude of a single biphasic pulse versus increasing the number of consecutive biphasic pulses at the same stimulus charge. Increasing the amplitude of a single biphasic pulse induced more RGC spike firing while the spatial resolution of RGC populations decreased. For multiple consecutive-biphasic pulse stimulation, RGC firing increased as the number of pulses increased, and the spatial resolution of RGC populations was well preserved even up to 5 pulses. Multiple consecutive-biphasic pulse stimulation using two or three pulses in degenerate retinas induced as much RGC spike firing as in normal retinas. These findings suggest that the newly proposed multiple consecutive-biphasic pulse stimulation can improve the visual acuity in prosthesis-implanted patients.

13.
Front Cell Neurosci ; 17: 1205048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576567

RESUMEN

Introduction: Photovoltaic restoration of vision, especially in conjunction with the use of silicon photodiodes, has gained attention for use in patients affected by blindness due to retinal layer disease. Although the use of silicon photodiodes offers miniaturization of the implant unit and increase in the stimulation channel, the implant unit may suffer from the fracture of these brittle photodiodes when mechanical pressure exerted. Methods: We present an organic solar cell (OSC)-based retinal prosthesis in which spherical gold nanoparticles (AuNPs) are embedded into the active layer to increase the efficiency of the bioelectric interface. Results: We demonstrate computationally that a modeled OSC incorporating spherical AuNPs has three times higher efficiency than that of a bare OSC presented before for retinal prostheses. Our AuNP based OSC was able to activate the neuron at the minimum light intensity of 0.26 mW/mm2, which is lower than that of the bare OSC. Discussion: The use of AuNPs in OSC allows device miniaturization or lowering of the light exposure required for neural activation using a photovoltaic retinal prosthesis, which can generally be applied in a broad range of neural prostheses.

14.
medRxiv ; 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-37546858

RESUMEN

Purpose: Retinal implants use electrical stimulation to elicit perceived flashes of light ("phosphenes"). Single-electrode phosphene shape has been shown to vary systematically with stimulus parameters and the retinal location of the stimulating electrode, due to incidental activation of passing nerve fiber bundles. However, this knowledge has yet to be extended to paired-electrode stimulation. Methods: We retrospectively analyzed 3548 phosphene drawings made by three blind participants implanted with an Argus II Retinal Prosthesis. Phosphene shape (characterized by area, perimeter, major and minor axis length) and number of perceived phosphenes were averaged across trials and correlated with the corresponding single-electrode parameters. In addition, the number of phosphenes was correlated with stimulus amplitude and neuroanatomical parameters: electrode-retina and electrode-fovea distance as well as the electrode-electrode distance to ("between-axon") and along axon bundles ("along-axon"). Statistical analyses were conducted using linear regression and partial correlation analysis. Results: Simple regression revealed that each paired-electrode shape descriptor could be predicted by the sum of the two corresponding single-electrode shape descriptors (p < .001). Multiple regression revealed that paired-electrode phosphene shape was primarily predicted by stimulus amplitude and electrode-fovea distance (p < .05). Interestingly, the number of elicited phosphenes tended to increase with between-axon distance (p < .05), but not with along-axon distance, in two out of three participants. Conclusions: The shape of phosphenes elicited by paired-electrode stimulation was well predicted by the shape of their corresponding single-electrode phosphenes, suggesting that two-point perception can be expressed as the linear summation of single-point perception. The notable impact of the between-axon distance on the perceived number of phosphenes provides further evidence in support of the axon map model for epiretinal stimulation. These findings contribute to the growing literature on phosphene perception and have important implications for the design of future retinal prostheses.

15.
J Clin Med ; 12(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37629325

RESUMEN

Patients with inherited retinal diseases (IRDs) utilize various adaptive techniques and devices designed to assist them with activities of daily living (ADLs). The purpose of this study was to assess the assistive devices used by patients with IRDs, the difficulties they face despite these devices, and their recommendations for a future visual prosthesis. In collaboration with blind patients, an online survey was developed and administered to adults with IRDs and visual acuities of 20/400 to no light perception in the better-seeing eye. We analyzed data from 121 survey respondents (aged 18 to >80 years). Five respondents were Argus II prosthesis recipients. The most commonly used aids were cellular phones/tablets for reading (63.6%) as well as a sighted guide (75.0%) and a cane (71.4%) for mobility. Despite current assistive devices, participants reported continued difficulty with ADLs. Improved navigation, reading, and facial recognition were ranked the most desirable features for future visual prostheses. Argus II recipients suggested technology with improved ability to recognize objects and obstacles, detect movement, and cut out busy backgrounds. These insights are valuable in shaping the design of future prosthetic devices tailored to the needs of IRD patients.

16.
Sensors (Basel) ; 23(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37447632

RESUMEN

A retinal prosthesis, also known as a bionic eye, is a device that can be implanted to partially restore vision in patients with retinal diseases that have resulted in the loss of photoreceptors (e.g., age-related macular degeneration and retinitis pigmentosa). Recently, there have been major breakthroughs in retinal prosthesis technology, with the creation of numerous types of implants, including epiretinal, subretinal, and suprachoroidal sensors. These devices can stimulate the remaining cells in the retina with electric signals to create a visual sensation. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 is conducted. This narrative review delves into the retinal anatomy, physiology, pathology, and principles underlying electronic retinal prostheses. Engineering aspects are explored, including electrode-retina alignment, electrode size and material, charge density, resolution limits, spatial selectivity, and bidirectional closed-loop systems. This article also discusses clinical aspects, focusing on safety, adverse events, visual function, outcomes, and the importance of rehabilitation programs. Moreover, there is ongoing debate over whether implantable retinal devices still offer a promising approach for the treatment of retinal diseases, considering the recent emergence of cell-based and gene-based therapies as well as optogenetics. This review compares retinal prostheses with these alternative therapies, providing a balanced perspective on their advantages and limitations. The recent advancements in retinal prosthesis technology are also outlined, emphasizing progress in engineering and the outlook of retinal prostheses. While acknowledging the challenges and complexities of the technology, this article highlights the significant potential of retinal prostheses for vision restoration in individuals with retinal diseases and calls for continued research and development to refine and enhance their performance, ultimately improving patient outcomes and quality of life.


Asunto(s)
Ingeniería Biomédica , Retina , Enfermedades de la Retina , Prótesis Visuales , Humanos , Calidad de Vida , Retina/patología , Retina/fisiología , Enfermedades de la Retina/patología , Enfermedades de la Retina/terapia , Prótesis Visuales/efectos adversos , Prótesis Visuales/normas , Prótesis Visuales/tendencias , Ingeniería Biomédica/instrumentación , Ingeniería Biomédica/tendencias , Electrodos Implantados/normas , Selección de Paciente , Resultado del Tratamiento
17.
Mol Ther Methods Clin Dev ; 29: 406-417, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37251979

RESUMEN

Optogenetic gene therapies offer a promising strategy for restoring vision to patients with retinal degenerative diseases, such as retinitis pigmentosa (RP). Several clinical trials have begun in this area using different vectors and optogenetic proteins (Clinical Identifiers: NCT02556736, NCT03326336, NCT04945772, and NCT04278131). Here we present preclinical efficacy and safety data for the NCT04278131 trial, which uses an AAV2 vector and Chronos as the optogenetic protein. Efficacy was assessed in mice in a dose-dependent manner using electroretinograms (ERGs). Safety was assessed in rats, nonhuman primates, and mice, using several tests, including immunohistochemical analyses and cell counts (rats), electroretinograms (nonhuman primates), and ocular toxicology assays (mice). The results showed that Chronos-expressing vectors were efficacious over a broad range of vector doses and stimulating light intensities, and were well tolerated: no test article-related findings were observed in the anatomical and electrophysiological assays performed.

18.
Biomed Eng Lett ; 13(2): 129-140, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37124107

RESUMEN

Retinal pigmentosa (RP) patients lose vision due to the loss of photoreceptors. Retinal prostheses bypass the dead photoreceptors by electrically stimulating surviving retinal neurons, such as bipolar cells or retinal ganglion cells (RGCs). In previous studies, stimulus charge has been mainly optimized to maximize the RGC response to electrical stimulation. This study aimed to investigate the effect of amplitude and duration even under the same charge condition on eliciting RGC spikes in the wild-type and degenerate retinas. Wild-type (WT) Sprague-Dawley rats were used as the normal retinal model, and Pde6b knockout rats were used as a retinal degeneration (RD) model. Electrically-evoked RGC spikes were recorded from isolated rat retinas using an 8 × 8 multielectrode array. The same charge was maintained (10 or 20 nC), and electrical stimulation was applied to WT and RD retinas, adjusting the amplitude and duration of the 1st phase of biphasic pulses. In the pulse modulation of the 1st phase, high amplitude (short duration) pulses induced more RGC spikes than low amplitude (long duration) pulses. Both WT and RD retinas showed a significant reduction in the number of RGC spikes upon stimulation with lower amplitude (longer duration) pulses. In clinical trials where stimulus charges are delivered to the degenerate retina of blind patients, high amplitude (short duration) pulses would help elicit more RGC spikes.

19.
ACS Nano ; 17(3): 2079-2088, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36724043

RESUMEN

The vision of patients rendered blind by photoreceptor degeneration can be partially restored by exogenous stimulation of surviving retinal ganglion cells (RGCs). Whereas conventional electrical stimulation techniques have failed to produce naturalistic visual percepts, nanoparticle-based optical sensors have recently received increasing attention as a means to artificially stimulate the RGCs. In particular, nanoparticle-enhanced infrared neural modulation (NINM) is a plasmonically mediated photothermal neuromodulation technique that has a demonstrated capacity for both stimulation and inhibition, which is essential for the differential modulation of ON-type and OFF-type RGCs. Gold nanorods provide tunable absorption through the near-infrared wavelength window, which reduces interference with any residual vision. Therefore, NINM may be uniquely well-suited to retinal prosthesis applications but, to our knowledge, has not previously been demonstrated in RGCs. In the present study, NINM laser pulses of 100 µs, 500 µs and 200 ms were applied to RGCs in explanted rat retinae, with single-cell responses recorded via patch-clamping. The shorter laser pulses evoked robust RGC stimulation by capacitive current generation, while the long laser pulses are capable of inhibiting spontaneous action potentials by thermal block. Importantly, an implicit bias toward OFF-type inhibition is observed, which may have important implications for the feasibility of future high-acuity retinal prosthesis design based on nanoparticle sensors.


Asunto(s)
Células Ganglionares de la Retina , Prótesis Visuales , Ratas , Animales , Luz , Potenciales de Acción/fisiología , Estimulación Eléctrica
20.
Turk J Ophthalmol ; 53(1): 58-66, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36847635

RESUMEN

This study presents the long-term clinical results of Argus II retinal prosthesis implantation in eyes with light perception and projection in 3 patients with end-stage retinitis pigmentosa. No conjunctival erosion, hypotony, or implant displacement was observed during postoperative follow-up. The electrical threshold values were lower in the macular region and higher close to the tack fixation region and peripherally. Optical coherence tomography scans showed fibrosis and retinoschisis formation at the retina-implant interface in two cases. This was attributed to mechanical and electrical effects on the tissue due to the active daily use of the system and the electrodes' proximity to the retina. The patients were able to integrate the system into their daily lives and perform activities that they could not do before. Studies on retinal prostheses for the rehabilitation of hereditary retinal diseases are ongoing, so both social and clinical observations and experiences related to the implant are valuable.


Asunto(s)
Enfermedades de la Retina , Prótesis Visuales , Humanos , Retina , Conjuntiva , Periodo Posoperatorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...